
Authenticated Data Structures as Functors in1

Isabelle/HOL2

Andreas Lochbihler3

Digital Asset, Zurich, Switzerland4

andreas.lochbihler@digitalasset.com,mail@andreas-lochbihler.de5

Ognjen Marić6

Digital Asset, Zurich, Switzerland7

ognjen.maric@digitalasset.com8

Abstract9

Authenticated data structures allow several systems to convince each other that they are referring10

to the same data structure, even if each of them knows only a part of the data structure. Using11

inclusion proofs, knowledgeable systems can selectively share their knowledge with other systems12

and the latter can verify the authenticity of what is being shared.13

In this paper, we show how to modularly define authenticated data structures, their inclusion14

proofs, and operations thereon as datatypes in Isabelle/HOL, using a shallow embedding. Modularity15

allows us to construct complicated trees from reusable building blocks, which we call Merkle functors.16

Merkle functors include sums, products, and function spaces and are closed under composition and17

least fixpoints.18

As a practical application, we model the hierarchical transactions of Canton, a practical inter-19

operability protocol for distributed ledgers, as authenticated data structures. This is a first step20

towards formalizing the Canton protocol and verifying its integrity and security guarantees.21

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of22

computation → Higher order logic; Theory of computation → Cryptographic primitives23

Keywords and phrases Merkle tree, functor, distributed ledger, datatypes, higher-order logic24

Supplement Material The formalization is available in the Archive of Formal Proofs [15].25

1 Introduction26

An authenticated data structure (ADS) allows several systems to use succinct digests to27

convince each other that they are referring to the same data structure, even if each of28

them knows only a part of the data structure. This has two main benefits. First, it saves29

storage and bandwidth, as the systems only have to store parts of the entire structure that30

they are interested in, and exchange just digests instead of the whole structure. This has31

been exploited for a wide range of applications, e.g., logs in Certificate Transparency and32

the blockchain structure and lightweight clients in Bitcoin. Second, ADSs allow parts of33

the structure to be kept confidential to a subset of the systems involved in processing the34

structure. For example, distributed ledger technology (DLT) promises to keep multiple35

organizations synchronized about the state of their joint business workflows. Synchronization36

requires transactions, i.e., atomic changes to the shared state. Yet organizations often do37

not want to share all the changes with all involved parties. Some DLT protocols such38

as the Canton interoperability protocol [6] and Corda [7] leverage ADSs to provide both39

transactionality and varying levels of confidentiality. The formalization of Canton was the40

starting point for this work.41

Merkle trees [17] are the prime example of an ADS. The original Merkle tree is a binary42

tree with data at the leaves, where every node is assigned a hash (serving as the digest)43

using a cryptographic hash function h : a leaf with data d has hash h d and an inner node44

https://orcid.org/0000-0002-5851-494X
mailto:andreas.lochbihler@digitalasset.com,mail@andreas-lochbihler.de
mailto:ognjen.maric@digitalasset.com

2 Authenticated Data Structures as Functors in Isabelle/HOL

tx: Bob+Alice complete the purchase contract
Visible to: Alice, Bob

subtx: Alice instructs Bank to
move money to Bob’s account
Visible to: Alice, Bob, Bank

subtx: Bob instructs DMV to
transfer title to Alice

Visible to: Alice, Bob, DMV

Figure 1 A hierarchical Canton transaction. DMV is the department of motor vehicles.

has the hash h (hl, hr) where hl and hr denote the hashes of the two children. If the hash45

of the root is known to all systems, then one system can convince another that a certain46

leaf stores data d. If π is the path from the root to the leaf, the inclusion proof consists47

of the sibling hashes of the nodes on the path. Given such an inclusion proof, the other48

system can recompute the hashes of the nodes on the path and check that the result matches49

the common root hash. This shows that the leaf indeed stores the given data if the hash50

function is collision-resistant. Moreover, the other system learns only hashes (of hashes) of51

the other data in the tree. So if h is preimage-resistant, then the inclusion proof does not52

leak information about the rest of the tree, provided that the hashed data contains sufficient53

entropy. This idea generalizes to finite tree data structures in general [18].54

In this work, we consider authenticated data structures, which generalize Merkle trees to55

arbitrary shape, and we show how to modularly define them as datatypes in Isabelle/HOL.56

Modularity allows us to construct complicated trees from small reusable building blocks, for57

which properties are easy to prove. To that end, we consider authenticated data structures58

as functors and equip them with appropriate operations and their specifications. We show59

that this class of functors includes sums, products, and function spaces, and is closed under60

composition and least fixpoints. Concrete functors are defined as algebraic datatypes using61

Isabelle/HOL’s datatype package [1]. This shallow embedding makes it possible to use62

Isabelle’s rich infrastructure for datatypes.63

As a practical application, we define ADSs over the hierarchical transactions [3] in the64

Canton protocol. To see an example of such a transaction, suppose that Alice wants to sell a65

car title to Bob. Transactionality allows Alice and Bob to exchange the title and the money66

atomically, which reduces their counterparty risks. Figure 1 shows the corresponding Canton67

transaction1 for exchanging the money and the title. The transaction is generated from68

a smart contract that implements the purchase agreement. Such smart contracts can be69

conveniently written in the functional programming language DAML [8], which is built on70

the same hierarchical transactions as Canton.71

Canton’s hierarchical transactions offer three advantages over conventional flat trans-72

actions found in other DLT solutions. First, complex transactions can be composed from73

smaller building blocks. In the example above, the atomic swap transaction composes two74

transactions: the money transfer and the title transfer. Second, if a participant is involved75

only in a subtransaction, then the participant learns the contents of just this subtransaction,76

but not of other parts. In the example, the Bank only sees the money transfer, but not77

what Alice bought; similarly, the department of motor vehicles (DMV) does not see the78

amount the car was sold for. This also improves scalability as everyone must process only79

1Here and elsewhere in the paper, we take significant liberties in the presentation of Canton and focus
on parts relevant for the construction of ADSs and for reasoning about them.

A. Lochbihler and O. Marić 3

the data they are involved in. Third, they include mandatory authorization checks, which80

are enforced even in the presence of Byzantine parties. Authorization flows from top to81

bottom to enable delegation.82

This hierarchy, enriched with some additional data, is encoded in ADSs and the protocol83

exchanges inclusion proofs for such trees. More details will be given throughout the paper.84

For now, it suffices to summarize the resulting requirements on the formalization:85

1. Hashes allow for checking whether two inclusion proofs refer to the same ADS. This86

allows Canton to commit the example transaction atomically at all participants, even if87

the Bank and the DMV see only a part of it.88

2. Inclusion proofs allow us to prove inclusion for multiple leaves at the same time. Canton89

sends such inclusion proofs to save bandwidth. Note that conventional inclusion proofs90

are only for a single leaf.91

3. Multiple inclusion proofs can be merged into one if they refer to the same ADS. This92

is because Canton merges inclusion proofs only if they have the same set of recipients.93

This reduces the load on the sender because it can multi-cast the same inclusion proof94

to all recipients. Merging also simplifies the recipients’ job: for example, Alice will95

receive inclusion proofs for the entire transaction as well as both sub-transactions in96

Figure 1. Merging them leaves her with just a single data structure representing the97

entire transaction.98

Our main contribution is a modular construction principle for ADSs as HOL datatypes,99

i.e., functors. We also derive a variant of the ADSs that models inclusion proofs. To that end,100

we introduce the class of Merkle functors, which are equipped with operations for hashing and101

merging as required above. Our construction is modular in the sense that the class of Merkle102

functors includes sums, products, and function spaces, and is closed under composition and103

least fixpoints. Accordingly, the construction works for any inductive datatype (sums of104

products and exponentials). Moreover, we show that the theory is suitable for constructing105

concrete real-world instances such as Canton’s transaction trees. The construction lives106

in the symbolic models, i.e., we assume that no hash collisions occur. Our Isabelle/HOL107

formalization is available in the Archive of Formal Proofs [15].108

The rest of the paper is structured as follows. In Section 2, we describe our abstract109

interface for ADSs. Section 3 shows how to construct such interfaces for tree-like structures110

in a modular fashion. Section 4 demonstrates how to create inclusion proofs for general rose111

trees and Canton transactions in particular. We discuss the related work in Section 5 and112

conclude in Section 6.113

2 Inclusion Proofs for Authenticated Data Structures114

We now present the operations and abstract interfaces for ADSs, motivated by their appli-115

cation to Canton. Figure 2 shows a suitable a Canton-based deployment, where the Bank116

and the DMV handle payments and car titles. The participants communicate with each117

other using the Canton protocol. Unlike in most other DLT solutions, business data resides118

with Canton primarily at the participants’ nodes that share the data only on a need-to-know119

basis [5]. Canton participants run a two-phase commit protocol to atomically update the120

system state using transactions. The protocol is run over a Canton domain, which is operated121

by a third party. The domain acts as the commit coordinator. While the participants may122

be Byzantine, the domain is assumed to be honest-but-curious. That is, it is trusted to123

correctly execute the protocol, but it should not learn the contents of a transaction (e.g.,124

4 Authenticated Data Structures as Functors in Isabelle/HOL

Canton domain

Bank DMV

Alice Bob

Figure 2 Example topology of a Canton-based distributed ledger

how much Alice pays to Bob). Instead, it should only learn the minimal metadata that125

allows the protocol to tolerate Byzantine participants. Consequently, Canton sends business126

data through the domain only in encrypted or hashed form.127

This motivates the transaction tree structure that Canton uses. The structure for the128

example transaction from Figure 1 is shown in Figure 3. Each (sub)-transaction of Figure 1129

is turned into a view in Figure 3, which consists of the view data and view metadata.130

For example, the node labeled by 1 in Figure 3 is the view corresponding to the top-level131

transaction in Figure 1. Its two children that are leaves contain the view’s data and metadata.132

The metadata contains the information about who is affected by the view (here, Alice and133

Bob) and should therefore participate in the two-phase commit. The metadata is shared with134

Alice, Bob and the domain. The view data contains the confidential data with the actual135

state updates, and is shared only with Alice and Bob. This view also has two subviews, which136

correspond to the sub-transactions in Figure 1 as expected. A view can have an arbitrary137

number of subviews; the views labeled by 1.1 and 1.2 have no subviews, for example.138

Additionally, the entire transaction is also equipped with metadata describing transaction-139

wide parameters, common to all views. Some of it is visible to all the involved participants,140

but not the domain, and some of it is visible to both the dmain and the participants. The leaf141

children of the tree’s root node store this metadata. Formally, the transaction tree can be mod-142

elled by the following datatypes, for some types common-metadata, participant-metadata,143

view-metadata, and view-data whose contents are not relevant for this paper.144

datatype view =145

View 〈view-metadata 〉 〈view-data 〉 (subviews : 〈view list 〉)146

datatype transaction =147

Transaction 〈common-metadata 〉 〈participant-metadata 〉 (views : 〈view list 〉)148

In Figure 3, the Transaction and View constructors become the inner nodes (black circles)149

and the data sits at the leaves (grey rectangles).150

An ADS over this structure allows the participants and the domain use the root hash to151

refer to a transaction, and be sure that they are all referring to the same transaction tree.152

When constructing root hashes, it is useful to think of ADSs with multiple roots (i.e., forests)153

rather than just a single root like in a Merkle tree. For example, consider how the root node154

of a binary Merkle tree is constructed from two children. The two children themselves are155

Merkle trees, so we already have a forest of Merkle trees. More precisely, this forest has the156

shape of a pair. By adding the root node, we combine the whole forest into a larger Merkle157

A. Lochbihler and O. Marić 5

1participant
metadata

common
metadata

1.1offer acceptance
view data

offer acceptance
view metadata

money transfer
view data

money transfer
view metadata

1.2

title transfer
view metadata

title transfer
view data

Figure 3 Simplified Canton transaction tree for car title sale of Figure 1

tree. By the construction of Merkle trees, the new root hash is computed solely from the root158

hashes of the two child trees. Note that the concrete hash operation depends on the shape159

of the forest (a pair in this case). The new root is again a degenerate forest of a single tree160

with a single root hash. This view underlies our modular construction principle in Section 3.161

In our construction, we will use the following conventions.162

1. Raw data to be arranged in an ADSs is written as usual, e.g., ′a, ′a list.163

2. Hashes and forests of hashes carry a subscript h as in ′ah. We leave hashes for now164

abstract as type variables and define them only in Section 3. Since the root hash identifies165

an ADS, we represent ADSs by their hashes.166

Taking a root hash can make communication more efficient, but it is not enough for our167

purposes. For example, Bank does not know the contents of view 1.2 or even who is involved168

in view 1.2; the domain hides the latter. The views that are visible to a participant are169

called the participant’s projection of the transaction. Canton aims to achieve the following170

integrity guarantee [3]: There exists a shared ledger that adheres to the underlying DAML171

smart contracts such that its projection to each honest participant consists exactly of the172

updates that have passed the participant’s local checks. Achieving this guarantee for the173

Bank hinges on the Bank’s ability to ensure that the view 1.1 is really included in the174

transaction tree. Thus, we also have to be able to prove that a substructure is included in a175

root hash.176

Inclusion proofs are therefore the main workhorse in our formalization and the focus of177

this paper. We will denote the type of inclusion proofs over the source type with a subscript178

m, e.g., ′am, (′am,
′ah) treem. We need two operations on inclusion proofs:179

1. Computing the (forest of) root hashes (which identifies the ADS to which the inclusion180

proof corresponds).181

2. Merging two inclusion proof with the same root hash.182

Accordingly, we introduce two type synonyms for these operations:183

type_synonym (′am,
′ah) hash = 〈 ′am ⇒ ′ah〉184

type_synonym ′am merge = 〈 ′am ⇒ ′am ⇒ ′am option 〉185

The merge operation returns None iff the inclusion proofs have different (forests of)186

root hashes. We require that merging is idempotent, commutative, and associative. The187

6 Authenticated Data Structures as Functors in Isabelle/HOL

locale merkle-interface below captures these properties. Associativity is expressed using188

the monadic (>>=) on the option type. The merge operation makes inclusion proofs with189

the same hash into a semi-lattice. We fix the induced order as another parameter bo of the190

locale, where an inclusion proof is smaller than another if it reveals less. In that case, we say191

that the smaller is a blinding of the larger inclusion proof.192

type_synonym ′am blinding-of = 〈 ′am ⇒ ′am ⇒ bool 〉193

locale merkle-interface =194

fixes h :: 〈(′am,
′ah) hash 〉195

and bo :: 〈 ′am blinding-of 〉196

and m :: 〈 ′am merge〉197

assumes merge-respects-hashes : 〈h a = h b ←→ (∃ ab. m a b = Some ab)〉198

and idem : 〈m a a = Some a 〉199

and commute : 〈m a b = m b a 〉200

and assoc: 〈m a b >>= m c = m b c >>= m a 〉201

and bo-def : 〈bo a b ←→ m a b = Some b〉202

As expected for a semi-lattice, merging computes the least upper bound in the blinding203

relation:204

(m a b = Some ab) = (bo a ab ∧ bo b ab ∧ (∀u . bo a u −→ bo b u −→ bo ab u))205

Also, the equivalence closure of the blinding relation gives the equivalence classes of the206

inclusion proofs under the hash function: equivclp bo = vimage2p h h (=) where equivclp207

R denotes the equivalence closure of R and vimage2p f g R = (λx y . R (f x) (g y)) the208

preimage of a relation under a pair of functions.209

Our interface does not provide generic operations to build inclusion proofs for subtrees210

of tree-shaped data. This is because the construction depends on the exact shape of the tree.211

In Section 4, we will show how to create such proofs for the general shape of rose trees and212

Canton transactions in particular, using standard functional programming techniques.213

3 Modularly Constructing Forests of Authenticated Data Structures214

In this section, we develop the theory to modularly construct ADSs and their inclusion215

proofs as HOL datatypes, including the operations for merkle-interface. We first introduce216

the concept of a blindable position (Section 3.1), which models a node in an ADS, and show217

how we obtain ADSs for Canton’s transaction trees by introducing blindable positions in the218

right spots of the datatype definitions (Section 3.2).219

The specification merkle-interface is not inductive and therefore not preserved by220

datatype constructions. We therefore generalize the specification and show that the general-221

ization is preserved under composition of functors and least fixpoints (Section 3.4). Finally,222

we show that sums, products and function spaces preserve the generalization (Section 3.5).223

3.1 Blindable position224

A blindable position represents a node (inner node or leaf) in an ADS. Every node in an225

ADS comes with its root hash. In this work, we model such hashes symbolically. That is,226

we assume that no hash collisions occur, i.e., the hash function from values to the type of227

hashes is injective. We do not assume surjectivity though: some hashes do not correspond to228

any value. We model such values as garbage coming from a countable set (the naturals). A229

A. Lochbihler and O. Marić 7

countable set is large enough given that ADS are always finite in practice (since one cannot230

compute a hash of infinite amounts of data).231

type_synonym garbage = 〈nat 〉232

datatype ′ah blindableh = Content 〈 ′ah〉 | Garbage 〈garbage〉233

Since the hash function is injective, we can identify the values ′a with a subset of234

the hashes, namely those of form Content _. Accordingly, we could also have written ′a235

blindableh instead of ′ah blindableh. However, as an ADS contains hashes of hashes, it is236

more accurate to use ′ah here.237

For example, a degenerate Merkle tree with a single leaf, which stores some data x, has238

the root hash Content x. What does an inclusion proof for this tree look like? It can take239

two forms:240

1. The inclusion proof proves inclusion of x, i.e., the leaf is not blinded. The inclusion proof241

thus contains x.242

2. The inclusion proof does not prove inclusion of x, i.e., the leaf is blinded. So the inclusion243

proof contains only the hash of x.244

In the second case, the recipients of such an inclusion proof cannot verify that the hash is245

meaningful (unless they already know the contents). So the hash could also be garbage. The246

following datatype formalizes these cases.247

datatype (′am,
′ah) blindablem = Unblinded 〈 ′am〉 | Blinded 〈 ′ah blindableh〉248

In general, inclusion proofs are nested, e.g., if a Merkle tree leaf contains another Merkle249

tree as data. We therefore use the inclusion proof type variable ′am instead of ′a for values,250

similar to ′ah in blindableh,251

Note that our hashes are typed. Accordingly, the formalization cannot confuse hashes of252

ADSs that store ints in their leaves with hashes of ADSs that store some other data, say253

string. In the real world, this could happen as hashes are usually just bitstrings. However,254

for reasoning about inclusion proofs, the garbage hashes adequately model such confusion255

possibilities: If security best practices are followed, type flaw attacks lead to different hashes256

unless a hash collision occurs. So the hash of the int Leaf would be interpreted as garbage in257

the type of hashes for the ADS of strings. This is adequate for inclusion proofs because we258

care about the contents of a hash only if the position is unblinded, i.e., of shape Content.259

Having introduced the types for blindable positions, we now define the corresponding260

operations and show that they satisfy the specification merkle-interface. The hash operation261

converts an inclusion proof into the root hash of the tree. We define it in two steps:262

(i) hash-blindable ′ assumes that there are no nested inclusion proofs, i.e., ′am = ′ah.263

(ii) hash-blindable generalizes hash-blindable ′ to nested inclusion proofs. It first converting264

nested inclusion proofs to their root hashes using the hash function that is given as a265

parameter. Here, map-blinddablem is the mapper generated by the datatype command.266

primrec hash-blindable ′ :: 〈((′ah,
′ah) blindablem,

′ah blindableh) hash 〉 where267

〈hash-blindable ′ (Unblinded x) = Content x 〉268

| 〈hash-blindable ′ (Blinded x) = x 〉269

270

definition hash-blindable271

:: 〈(′am,
′ah) hash ⇒ ((′am,

′ah) blindablem,
′ah blindableh) hash 〉 where272

〈hash-blindable h = hash-blindable ′ ◦ map-blindablem h id 〉273

Next, we define the blinding order blinding-of-blindable. Like hash-blindable, it is274

parametrized by the hash function and the blinding order for the nested inclusion proofs.275

8 Authenticated Data Structures as Functors in Isabelle/HOL

The first clause lifts the blinding order in case the inclusion proof unblinds the contents.276

The second clause, when the position on the left is blinded, checks that both positions have277

the same hash.278

context fixes h :: 〈(′am,
′ah) hash 〉 and bo :: 〈 ′am blinding-of 〉 begin279

inductive blinding-of-blindable :: 〈(′am,
′ah) blindablem blinding-of 〉 where280

〈blinding-of-blindable (Unblinded x) (Unblinded y)〉 if 〈bo x y 〉281

| 〈blinding-of-blindable (Blinded x) t 〉 if 〈hash-blindable h t = x 〉282

end283

Merging of blindable positions works similarly. If both positions are unblinded,merge-blindable284

tries to merge the contents. If both are blinded, it succeeds iff the hashes are the same.285

Otherwise, it checks that the hashes are the same and, if so, returns the unblinded version.286

context fixes h :: 〈(′am,
′ah) hash 〉 and m :: 〈 ′am merge〉 begin287

fun merge-blindable :: 〈(′am,
′ah) blindablem merge〉 where288

〈merge-blindable (Unblinded x) (Unblinded y) = map-option Unblinded (m x y)〉289

| 〈merge-blindable (Blinded t) (Blinded u) =290

(if t = u then Some (Blinded u) else None)〉291

| 〈merge-blindable (Blinded x) (Unblinded y) =292

(if x = Content (h y) then Some (Unblinded y) else None)〉293

| 〈merge-blindable (Unblinded y) (Blinded x) =294

(if x = Content (h y) then Some (Unblinded y) else None)〉295

end296

It is straightforward to show that these definitions preserve the specificationmerkle-interface.297

That is, if the operations for nested inclusion proofs satisfy merkle-interface, then so do the298

operations for blindablem.299

lemma merkle-blindable :300

〈merkle-interface301

(hash-blindable h)302

(blinding-of-blindable h bo)303

(merge-blindable h m)〉304

if 〈merkle-interface h bo m 〉305

3.2 Example: Canton transaction trees306

We now illustrate how to use blindableh and blindablem to define the ADSs and307

inclusion proofs for the Canton transaction trees from Section 2. As shown in Figure 3, the308

transaction tree contains a node for the transaction tree as a whole, every view, and every309

leaf (common-metadata, participant-metadata view-metadata, and view-data). Yet, the310

datatype declarations do not contain the information what should become a separate node311

in the ADS. To make the construction systematic, we consider the blindable positions to be312

marked in the datatype with the type constructor blindable.313

type_synonym ′a blindable = 〈 ′a 〉314

So we pretend in this section as if views and transactions were defined as follows:315

datatype view = View316

〈((view-metadata blindable × view-data blindable) × view list) blindable〉317

datatype transaction = Transaction318

A. Lochbihler and O. Marić 9

〈((common-metadata blindable × participant-metadata blindable) × view list)319

blindable〉320

To define the hashes and inclusion proofs, we simply replace each type constructor τ with321

its counterparts τh and τm. For views, this looks as follows. Here ×h, ×m, listh, and listm322

are type synonyms for × and list ; Section 3.5 introduces them formally. We abuse notation323

by writing view-metadatah view-metadatam for the blindable position of view-metadata.324

type_synonym view-metadatah = 〈view-metadata blindableh〉325

type_synonym view-datah = 〈view-data blindableh〉326

datatype viewh = Viewh 〈((view-metadatah ×h view-datah) ×h viewh listh) blindableh〉327

type_synonym view-metadatam = 〈(view-metadata , view-metadata) blindablem〉328

type_synonym view-datam = 〈(view-data , view-data) blindablem〉329

datatype viewm = Viewm330

〈((view-metadatam ×m view-datam) ×m viewm listm,331

(view-metadatah ×h view-datah) ×h viewh listh) blindablem〉332

These types nest hashes and inclusion proofs: A view node, e.g., nests hashes and inclusion333

proofs for the metadata, the data, and all the subviews. In particular, the viewh and viewm334

datatypes recurse through the blindableh and blindablem type constructors. This works335

because blindableh and blindablem are bounded natural functors (BNFs) [21]. In fact, this336

transformation works for any datatype declaration thanks to the compositionality of BNFs.337

The construction for transaction trees is accordingly:338

type_synonym common-metadatah = 〈common-metadata blindableh〉339

type_synonym common-metadatam =340

〈(common-metadata , common-metadata) blindablem〉341

type_synonym participant-metadatah = 〈participant-metadata blindableh〉342

type_synonym participant-metadatam =343

〈(participant-metadata , participant-metadata) blindablem〉344

datatype transactionh = Transactionh345

〈((common-metadatah ×h participant-metadatah) ×h viewh listh) blindableh〉346

datatype transactionm = Transactionm347

〈((common-metadatam ×m participant-metadatam) ×m viewm listm,348

(common-metadatah ×h participant-metadatah) ×h viewh listh) blindablem〉349

3.3 Composition350

Having defined the types of ADSs, we next must define the operations on ADSs and prove that351

they satisfy merkle-interface. Doing so directly is possible, but prohibitively cumbersome.352

Instead, we modularize the proofs following the structure of the types. We can derive353

preservation lemmas for all involved type constructors analogous to merkle-blindable.354

The preservation lemmas are compositional by construction: if ′ah τh/ ′am τm and355

′bh σh/ ′bm σm preserve merkle-interface, then so does their composition ′ah τh σh/ ′am356

τm σm. Moreover, every nullary functor also satisfies merkle-interface with the discrete357

ordering (=).358

definition merge-discrete :: 〈 ′a merge〉 where359

10 Authenticated Data Structures as Functors in Isabelle/HOL

〈merge-discrete x y = (if x = y then Some y else None)〉360

lemma merkle-discrete : 〈merkle-interface id (=) merge-discrete〉361

For view-data, for example, we compose the corresponding discrete functor with a blindable362

position.363

abbreviation hash-view-data :: 〈(view-datam, view-datah) hash 〉 where364

〈hash-view-data ≡ hash-blindable id 〉365

abbreviation blinding-of-view-data :: 〈view-datam blinding-of 〉 where366

〈blinding-of-view-data ≡ blinding-of-blindable id (=)〉367

abbreviation merge-view-data :: 〈view-datam merge〉 where368

〈merge-view-data ≡ merge-blindable id merge-discrete〉369

370

lemma merkle-view-data :371

〈merkle-interface hash-view-data blinding-of-view-data merge-view-data 〉372

by(rule merkle-blindable)(rule merkle-discrete)373

If we do the same for view-metadata and consider the pair view-metadata × view-data,374

composition immediately gives us the following (the operations for products will be introduced375

in Section 3.5).376

lemma 〈merkle-interface377

(hash-prod hash-view-metadata hash-view-data)378

(blinding-of-prod blinding-of-view-metadata blinding-of-view-data)379

(merge-prod merge-view-metadata merge-view-data)〉380

3.4 Inductive generalization for least fixpoints381

The view datatype is the least fixpoint of the functor382

′a F = ((view-metadata blindable × view-data blindable) × ′a list) blindable383

and so are viewh and viewm of analogous functors Fh and Fm. Composition gives us a384

preservation theorem for F, but we need more for least fixpoints.385

In fact, merkle-interface is not inductive, so least fixpoints need not preserve it. The386

problem is the following: In the inductive preservation proof, we get the induction hypoth-387

esis only for smaller values. We therefore cannot use F ’s preservation theorem because388

merkle-interface requires the conditions to hold on all values, not just the smaller ones. So389

we must generalize merkle-interface to make it inductive.390

In our first attempt with a direct generalization, the proofs about the merge operation391

turned out to be rather cumbersome. The associativity law in particular required many392

case distinctions due to the options. We therefore present a different approach where the393

focus is on the blinding relation and merge is merely characterized as the join. We abstractly394

derive commutativity, idempotence, and associativity for merge once and for all from the395

ordering properties and merge’s characterization. This leads to simpler proofs where all case396

distinctions dealt with by Isabelle’s proof automation.397

Our generalization splits merkle-interface into three locales (Figure 4):398

1. The locale blinding-respects-hashes splits off the first assumption of merkle-interface.399

No relativization is needed here because the (inductive) blinding order bo occurs only400

once and in a negative position. The preservation proof can therefore use rule induction401

rather than structural induction.402

A. Lochbihler and O. Marić 11

locale blinding-respects-hashes =
fixes h :: 〈(′am, ′ah) hash〉

and bo :: 〈 ′am blinding-of〉
assumes hash: 〈bo 6 vimage2p h h (=)〉

locale blinding-of-on = blinding-respects-hashes 〈h〉 〈bo〉 for A h bo +

assumes refl: 〈x ∈ A =⇒ bo x x〉

and trans: 〈[[bo x y; bo y z; x ∈ A]] =⇒ bo x z〉

and antisym: 〈[[bo x y; bo y x; x ∈ A]] =⇒ x = y〉

locale merge-on = blinding-of-on 〈UNIV〉 〈h〉 〈bo〉 for A h bo m +

assumes join: 〈[[h x = h y; x ∈ A]]

=⇒ ∃ z. m x y = Some z ∧ bo x z ∧ bo y z ∧ (∀u. bo x u −→ bo y u −→ bo z u)〉
and undefined: 〈[[h x 6= h y; x ∈ A]] =⇒ m x y = None〉

Figure 4 Inductive generalization of merkle-interface

2. The locale blinding-of-on formalizes the order properties of the blinding relation bo403

(reflexivity, transitivity, antisymmetry). It fixes a set A in addition to the Merkle404

operations; the inductive proof for fixpoints instantiates A with the set of smaller terms405

for which the properties hold by the induction hypothesis. Accordingly, one of the406

variables in the properties is restricted to A. (Since the induction proof will be structural,407

it suffices to restrict one variable instead of all.) Unlike hash for blinding-respects-hashes,408

transitivity and antisymmetry cannot be shown by rule induction even though bo occurs409

as an assumption, because bo occurs multiple times, but rule induction acts only on410

one. Accordingly, F ’s preservation theorem does not apply to the induction hypothesis411

because it assumes that all occurrences are the same.2412

3. The locale merge-on augments blinding-of-on with the characterization for merge as the413

join. While merge-on ’s assumptions are again restricted by A, the restriction is removed414

on the assumptions of the parent locale blinding-of-on by setting A to the type universe415

UNIV.416

This change is crucial and the reason for introducing three locales: When we prove join417

for the least fixpoint, we can (and must) use that bo is an order everywhere. This is418

because join uses bo with many different arguments, in particular the result z of the419

merge. In a unified locale, we would have to prove that z stays within the set A, which420

incurred a lot more proof effort.421

In the unrestricted case, merge-on is equivalent to merkle-interface :422

lemma 〈merkle-interface h bo m ←→ merge-on UNIV h bo m 〉423

We are now ready to define the class of Merkle functors. For readability, we only spell424

out the case of unary functors. The generalization to n-ary functors is as expected.425

I Definition 1 (Merkle functor). A unary BNF Fh and binary BNF Fm constitute a426

unary Merkle functor if there exist operations hash-F ′ :: ((′ah,
′ah) Fm,

′ah Fh) hash427

2Alternatively, we could have generalized the property such that different blinding relations are allowed.
Preservation of transitivity becomes preservation of relation composition and antisymmetry transforms into
preservation of intersections. For reflexivity, we would still have needed to the set A however.

12 Authenticated Data Structures as Functors in Isabelle/HOL

and blinding-of-F :: (′am,
′ah) hash ⇒ ′am blinding-of ⇒ (′am,

′ah) Fm blinding-of428

and merge-F :: (′am,
′ah) hash ⇒ ′am merge ⇒ (′am,

′ah) Fm merge with the429

following properties430

Monotonicity
bo 6 bo ′

blinding-of-F h bo 6 blinding-of-F h bo ′

Congruence
∀ a∈A. ∀ b. m a b = m ′ a b

∀ x ∈ {y . set1-Fm y ⊆ A}. ∀ b. merge-F h m x y = merge-F h m ′ x y

Hashes
blinding-respects-hashes h bo

blinding-respects-hashes (hash-F h) (blinding-of-F h bo)

Blinding order
blinding-of-on A h bo

blinding-of-on {x . set1-Fm x ⊆ A} (hash-F h) (blinding-of-F h bo)

Merge
merge-on A h bo m

merge-on {x . set1-Fm x ⊆ A} (hash-F h) (blinding-of-F h bo) (merge-F h m)

431

where hash-F h = hash-F ′ ◦ map-Fm h id.432

Every Merkle functor preserves merkle-interface : set A = UNIV in the merge property433

and use the above equivalence between merkle-interface and merge-on.434

We are now ready to state and prove the main theoretical contribution of this paper.435

I Theorem 2. Merkle functors of arbitrary arity are closed under composition and436

least fixpoints.437

Proof. Closure under composition is obvious from the shape of the properties and the fact438

that BNFs are closed under composition.439

For closure under least fixpoints, we consider a functor F and its least fixpoint T through440

one of F ’s arguments. say datatype T = T "T F", and similarly for Th and Tm. The441

operations are defined as follows, where we omit all Merkle operation parameters for type442

parameters that are not affected.443

The hash operation hash-T ′ is defined by primitive recursion:444

hash-T ′ (Tm x) = Th (hash-F ′ (map-Fm hash-T ′ x)).445

The blinding order blinding-of-T is defined inductively by the following rule:446

blinding-of-F hash-T blinding-of-T x y

blinding-of-T (Tm x) (Tm y)
447

Monotonicity ensures that blinding-of-T is well-defined.448

Merge merge-T is defined by well-founded recursion (over the subterm relation on Tm):449

merge-T (Tm x) (Tm y) = map-option Tm (merge-F hash-T merge-T x y)450

Congruence ensures that merge-F calls merge-T recursively only on smaller arguments.451

We have not been able to define merge-T with primitive recursion, which allows pattern452

matches only on one argument, not two. Our attempts with primrec failed because the453

recursive call occurs under merge-F, which is not Fm’s mapper. The usual trick of using454

parametricity theorems to extract the recursive calls into map-Fm did not work because455

the parametricity theorem for merge-F is too weak. It is also not clear how it could be456

strengthened without excluding important examples of Merkle functors such as blindable.457

A. Lochbihler and O. Marić 13

Well-founded recursion works well, except that Isabelle has no automatic parametricity458

inference for well-founded recursion. We therefore manually proved the parametricity459

theorems that the transfer package needs.460

Monotonicity and preservation of blinding-respects-hashes are proven by rule induction on461

blinding-of-T. Congruence, blinding-of-on, and merge-on are shown by structural induction462

on the argument that is constrained by A. J463

It is not possible to formalize this theorem abstractly in Isabelle/HOL because it is not464

possible to abstract over type constructors. Instead, we have axiomatized a binary Merkle465

functor using the bnf_axiomatization command and carried out the construction and proofs466

for least fixpoints and composition. This approach is similar to how Blanchette et al. have467

formalized the theory of bounded natural functors [2]. The axiomatization also illustrates468

how the definition and proofs generalize to several functors with type arguments. Moreover,469

all the example ADS constructions in Section 3.6 merely adapt these proofs to the concrete470

functors at hand.471

3.5 Concrete Merkle functors472

We now present concrete Merkle functors. They show that the class of Merkle functors is473

sufficiently large to be of interest. In particular, it contains all inductive datatypes (least474

fixpoints of sums of products). We have formalized all of the following.475

The discrete functor from Section 3.3 with hash operation id and the discrete blinding476

order (=) is a nullary Merkle functor.477

Blindable positions blindableh and blindablem are a unary Merkle functor.3478

Sums and products are binary Merkle functors. We set ′ah ×h
′bh = ′ah × ′bh and479

′am ×m
′bm = ′am × ′bm and similarly for +h and +m. Formally, ×m and +m should480

take four type arguments. However, as sums and products do not themselves contain481

blindable positions, the type arguments ′ah and ′bh are ignored and we therefore omit482

them. The hash operations hash-prod and hash-sum are the mappers map-prod and483

map-sum, respectively. The blinding orders blinding-of-prod and blinding-of-sum are484

the relators rel-prod and rel-sum. The merge operations are defined as follows:485

merge-prod ma mb (x , y) (x ′, y ′) =486

ma x x ′ >>= (λx ′ ′. map-option (Pair x ′ ′) (mb y y ′))487

merge-sum ma mb (Inl x) (Inl y) = map-option Inl (ma x y)488

merge-sum ma mb (Inr x) (Inr y) = map-option Inr (mb x y)489

merge-sum ma mb (Inr v) (Inl va) = None490

merge-sum ma mb (Inl va) (Inr v) = None491

The function space ′a ⇒ ′b is a unary Merkle functor in the codomain. (Like for sums492

and products, ′a ⇒h
′bh = ′a ⇒ ′bh and ′a ⇒m

′bm = ′a ⇒ ′bm and we omit the493

ignored ′bh.) Hashing is function composition and the blinding order is pointwise. Merge494

is defined by495

3The proof of transitivity preservation requires that the blinding order bo on ′am respects hashes
everywhere, not only on A. This is the reason why we have split the locale blinding-respects-hashes from
blinding-of-on.

14 Authenticated Data Structures as Functors in Isabelle/HOL

merge-fun m f g =496

(if ∀ x . m (f x) (g x) 6= None then Some (λx . the (m (f x) (g x))) else None)497

Proving the Merkle properties requires choice.498

3.6 Case study: Merkle rose trees and Canton’s transactions499

Thanks to Theorem 2, all datatypes built from the Merkle functors in the previous section500

are also Merkle functors. We now show the elegance and expressiveness of Merkle functors501

using three datatypes: lists, rose trees and Canton transaction, where each builds on the502

previous ones.503

Lists are isomorphic to the datatype504

datatype ′a list ′ = List ′ 〈unit + ′a × ′a list ′〉505

and therefore also a Merkle functor. We have carried out this construction as list occurs in506

Canton transaction trees. Like sums, products, and function spaces, lists do not contain507

blindable positions directly, so listh = listm = list. Hashing and the blinding order are the508

mapper and the relator. Initially, we tried to prove merkle-interface for lists directly, but509

the proofs about merge quickly got out of control. We therefore carried out the fixpoint510

construction of Theorem 2 for list ′ and transferred the definitions and theorems to list using511

the transfer package [13].512

Rose trees are then given by the datatype513

datatype ′a rose-tree = Tree 〈(′a × ′a rose-tree list) blindable〉514

Applying our constrution, we obtain Merkle rose trees as515

datatype ′ah rose-treeh = Treeh 〈(′ah ×h
′ah rose-treeh listh) blindableh〉516

datatype (′am,
′ah) rose-treem = Treem517

〈(′am ×m (′am,
′ah) rose-treem listm, ′ah ×h

′ah rose-treeh listh) blindablem〉518

with the corresponding operations and their properties.519

From here, it is only a small step to transactions in Canton. Views are Merkle rose520

trees where the data at the nodes is instantiated with the Merkle functor corresponding to521

view-metadata blindable × view-data blindable. Then, transactions compose the Merkle522

functor for common-metadata blindable × participant-metadata blindable × - list with523

views. We have lifted our machinery from these raw Merkle functors to the datatypes viewm524

and transactionm using the lifting and transfer packages [13].525

4 Creating Inclusion Proofs526

So far, given a tree-like data type ′t, we showed how to systematically construct the527

corresponding type of ADSs ′th and their inclusion proofs, ′tm. To make use of this528

construction in practice, we must also be able to create values of type ′tm from values of type529

′t. As in the case of our composition and fixpoint theorem, HOL’s lack of abstraction over530

type constructors makes it impossible to express this process in HOL in its full generality.531

Instead, we show how it works on rose trees, as these are the most general type of tree in532

terms of branching. The construction can be easily adapted for other kinds of trees.533

There are three basic operations:534

Hashing hash-source-tree returns the root hash for a source tree.535

A. Lochbihler and O. Marić 15

Embedding embed-source-tree returns the inclusion proof that proves inclusion of the536

whole tree.537

Fully blinding blind-source-tree returns the inclusion proof that proves no inclusion at538

all.539

Hashing and fully blinding conceptually do the same thing, but their return types (′ah540

rose-treeh and (′am,
′ah) rose-treem) differ. As rose trees are parameterized by their node541

label type, hashing, embedding and fully blinding take parameters which hash or embed the542

node labels. The expected properties hold: the embedded and fully blinded versions of the543

same source tree have the same hash, namely the hashing of the source tree, and the former544

is a blinding of the latter.545

The more interesting operations concern creating an inclusion proof for a subtree of a546

tree. For example, with Canton’s hierarchical transactions, we would like to prove that a547

subtransaction is really part of the entire transaction. Such a proof consists of the subtree548

itself, together with a path connecting the tree’s root to the subtree’s root. As noticed by549

Seefried [20], this corresponds to a zipper [12] focused on the subtree. This enables simple550

manipulation of such proofs in a functional programming style, well-suited to HOL. The551

zippers for rose trees are captured by the following types.552

type_synonym ′a path-elem = 〈 ′a × ′a rose-tree list × ′a rose-tree list 〉553

type_synonym ′a path = 〈 ′a path-elem list 〉554

type_synonym ′a zipper = 〈 ′a path × ′a rose-tree〉555

Given a zipper that focuses on a node, we define the operations that turn rose trees into556

zippers and vice-versa557

tree-of-zipper ([], t) = t558

tree-of-zipper ((a , l , r) · z , t) = tree-of-zipper (z , Tree (a , l @ t · r))559

zipper-of-tree t ≡ ([], t)560

The zippers for inclusion proofs have the exact same shape, except that all the type561

constructors are subscripted by m and have another type parameter capturing the type of562

hashes (e.g., (′a , ′ah) zipperm). Like for source trees, we define operations that blind and563

embed a path respectively, and define operations that convert between Merkle rose trees564

and their zippers. As expected, given the same source zipper, blinded and embedding its565

path yield a Merkle rose tree with the same hash. Furthermore, reconstructing a Merkle rose566

tree constructed by embedding a source zipper gives the same result as first reconstructing567

the source zipper, and then embedding it into a Merkle rose tree. Finally, we show that568

reconstruction of trees from zippers respects the blinding relation if the Merkle operations569

on the labels satisfy merkle-interface :570

blinding-of-tree h bo (tree-of-zipperm (p, t)) (tree-of-zipperm (p, t ′)) =571

blinding-of-tree h bo t t ′
572

Inclusion proofs derived from zippers prove inclusion of a single subtree of the rose tree.573

When we want to create an inclusion proof for several subtrees, we create an inclusion proof574

for each individual subtree and then merge them into one. To that end, we have defined the575

function zippers-rose-tree that enumerates the inclusion proof zippers for all nodes of a rose576

tree.577

For Canton’s transactions, we have lifted the zippers and their theorems from rose trees578

to views. We define the projection of the inclusion-proof embedded view for one participant579

P as follows:580

16 Authenticated Data Structures as Functors in Isabelle/HOL

1. Enumerate all zippers for the views in the transaction using the lifted version of581

zippers-rose-tree.582

2. Each such zipper gives us direct access to the view’s metadata. Use the metadata to583

determine whether P is a recipient of the view. If not, filter out the zipper.584

3. Convert the zippers into inclusion proofs for the view and compose each of them with585

the transaction metadata inclusion proof.586

4. Merge all these inclusion proofs into one.587

This gives an inclusion proof for the recipient’s projection of the transaction. At the end588

of the two-phase commit protocol, the domains’s commit message contains an inclusion589

proof of the view common data for all the views that the participant should have received.590

By comparing this inclusion proof against the projection using blinding-of-transaction,591

the participant can decide whether it has received all views it was supposed to receive.592

(Conversely, checking that it does not receive extraneous views is simple as it can be read593

from the view metadata.)594

5 Related Work595

Miller et al. developed a lambda calculus with authentication primitives for generic tree596

structures [18]. The calculus was formalized in Isabelle/HOL by Brun and Traytel [4]. In the597

calculus, the programmer annotates the structures with authentication tags. Given a value598

of such a structure, and a function operating on it, their presented method automatically599

creates a correctness proof accompanying a result. The proof allows a verifier that holds600

only a digest of values with authentication tags (but not the values themselves) to check601

the function’s result for correctness. The proof is a stream of inclusion proofs, one for each602

tagged value that the function operates on. Merging of inclusion proofs is not considered,603

although the streams can be optimized by sharing. Unlike Brun and Traytel [4] who use604

a deep embedding with the Nominal library, our embedding is shallow. Furthermore, our605

ADSs can provide inclusion proofs for multiple sub-structures simultaneously. However, we606

do not aim to derive correctness proofs for functions on the data structures.607

White [22] designed a cryptographic ledger with lightweight proofs of transaction validity608

and formalized the design in Coq. The ledger is a function from assets to addresses.609

Transactions move assets between addresses and transform one ledger into another. The610

transactions’ plausibility can be proved by checking that the assets existed in the old ledger611

and that the assets in the new ledger were moved to the correct place. Ledgers are represented612

by a tree, where leaves list assets and a tree path encodes an address. A Merkle structure613

over the tree and Merkle inclusion proofs of the assets’ movement relieve the verifiers from614

having to know the entire ledger. A merge operation allows a single Merkle tree to provide615

several inclusion proofs. The Coq development is tailored to the use case: the Merkle trees616

are binary and the leaves are restricted to fixed single type (either asset lists or sentinels that617

mark empty subtrees). Our generic development can be instantiated to cover this structure.618

Yu et al. [23] use Merkle constructions on different binary trees to implement logs with619

inclusion and exclusion proofs. The constructions are proved correct using a pen-and-paper620

approach. The proved properties are then used in the Tamarin verification tool to analyze a621

security protocol.622

Ogawa et al [19] formalize binary Merkle trees as used in a timestamping protocol. They623

automatically verify parts of the protocol using the Mona theorem prover.624

Seefried [20] observed that inclusion proofs in a Merkle tree correspond to the derivative625

of the type, i.e., a Huet-style zipper [12], where the subtrees in zipper context have been626

A. Lochbihler and O. Marić 17

replaced by the Merkle root hashes. McBride showed that zippers represent one-hole contexts627

[16]. In this analogy, our inclusion proofs correspond to contexts with arbitrarily many holes628

where the subtrees without holes have been replaced by the corresponding hashes. These629

many-hole zippers must not be confused with Kiselyov’s zippers [14] and Hinze and Jeuring’s630

webs [11], which are derived from the traversal operation rather than the data structure .631

6 Conclusion and Future Work632

We have presented a modular construction principle for authenticated data structures over633

HOL datatypes (i.e., functors) that have a tree-like shape, and basic operations over these634

structures. The class of supported functors includes sums, products, and functions, and635

is closed under composition and least fixpoints. The supported operations are root hash636

computations and merging of inclusion proofs. We showed how to instantiate the construction637

to rose trees, as well as to a real-world structure used in Canton, a Byzantine fault tolerant638

atomic commit protocol.639

The ongoing formalization of the Canton protocol will continue to test our abstractions640

and trigger further improvements. As noted earlier, ADSs cannot only improve storage641

efficiency, but also provide confidentiality. For example, Canton uses them to keep parts of a642

transaction confidential to a subset of the transaction’s participants. However, reasoning643

about confidentiality is not straightforward. As hashing is injective, we can simply write644

inv h x in HOL to obtain the pre-image of a hash x. In fact, our current model does not645

even distinguish between the authenticated data structure and its root hash because of this.646

A sound confidentiality analysis must therefore restrict the adversary using an appropriate647

calculus, e.g., a Dolev-Yao style deduction relation [9].648

In a system, if a source substructure S is unblinded somewhere in an inclusion proof ip,649

then the confidentiality analysis of the structure should unblind all occurrences of Blinded650

(Content S), in ip, regardless of the position where they occur. Our blinding orders and651

the merge operation do not do this. For example, consider a binary Merkle tree of two652

leaves that both store a value x. So both leaves have the same hash, and the recipient of653

an inclusion proof for one leaf detects that the other leaf has the same hash. So they can654

deduce that the other leaf also contains the value x. Yet, in our blinding order, the inclusion655

proof for one leaf is strictly smaller than an inclusion proof for both leafs. For proving656

Canton’s integrity guarantees, this is not a problem because confidentiality is not a concern.657

Moreover, all leaves in the transaction tree contain nonces and the domain checks that all658

hashes in its inclusion proof are distinct. So the lack of unblinding might not be a problem659

for reasoning about confidentiality in Canton, even though a proper treatment would simplify660

the soundness argument.661

A related issue is that our modular approach does not apply to commutative structures,662

such as multisets. The conceptual problem is that the issue with substructures and confiden-663

tiality also appears when merging inclusion proofs for commutative structures. One option is664

consider Merkle functors as quotients with respect to a normalization function that collects665

all unblinding information and propagates the unblinding across the whole inclusion proof.666

The normalized inclusion proofs then serve as the canonical representatives. We have not667

yet worked out whether such a construction can still be modular and whether the quotients668

are still BNFs [10].669

Moreover, our representation of hashes as terms makes hashing injective. While this670

is "morally equivalent" to standard cryptographic assumptions, an alternative (followed671

by [4]) would be to prove results about authentication as a disjunction: either the result672

holds, or a hash collision was found. The advantage of such a statement would be that hash673

18 Authenticated Data Structures as Functors in Isabelle/HOL

collisions become explicit, which simplifies the soundness argument for the formalization. As674

is, nothing that prevents us from conceptually "evaluating" the hash function on arbitrarily675

many inputs, which would not be cryptographically sound. To make hash collisions explicit,676

we must make hashes explicit, i.e., use a type like bitstrings instead of terms. This can be677

done as additional step.678

typedecl bitstring679

class encode =680

fixes encode :: 〈 ′a ⇒ bitstring 〉681

assumes enj-encode : 〈inj encode〉682

Encoding functions must be defined for all types used as arguments to blindable. For683

blindable itself, we then define the actual hash operation as follows.684

primrec root-hash :: 〈(′ah :: encode) blindableh ⇒ bitstring 〉 where685

〈root-hash (Garbage garbage) = encode-garbage garbage〉686

| 〈root-hash (Content x) = encode x 〉687

This can be lifted to forests using the functorial structure of Merkle functors, similar688

to how hash-F h = hash-F ′ ◦ map-Fm h id first hashes the elements of F using h and689

then applies the actual function hash-F ′. We do not expect problems with extending690

our constructions to such a model, but it is unclear how severely the indirection through691

bitstrings impacts our proofs, in particular the Canton formalization.692

References693

1 Jasmin Christian Blanchette, Johannes Hölzl, Andreas Lochbihler, Lorenz Panny, Andrei694

Popescu, and Dmitriy Traytel. Truly modular (co)datatypes for Isabelle/HOL. In Gerwin695

Klein and Ruben Gamboa, editors, Interactive Theorem Proving (ITP 2014), volume 8558696

of LNCS (LNAI), pages 93–110. Springer, 2014. doi:10.1007/978-3-319-08970-6_7.697

2 Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel. Operations on bounded698

natural functors. Archive of Formal Proofs, 2017. http://isa-afp.org/entries/BNF_699

Operations.html, Formal proof development.700

3 Sören Bleikertz, Andreas Lochbihler, Ognjen Marić, Simon Meier, Matthias Schmalz,701

and Ratko G. Veprek. A structured semantic domain for smart contracts. Computer702

Security Foundations poster session (CSF 2019), https://www.canton.io/publications/703

csf2019-abstract.pdf, 2019.704

4 Matthias Brun and Dmitriy Traytel. Generic authenticated data structures, formally. In705

John Harrison, John O’Leary, and Andrew Tolmach, editors, Interactive Theorem Proving706

(ITP 2019), volume 141 of LIPIcs, pages 10:1––10:18. Schloss Dagstuhl–Leibniz-Zentrum für707

Informatik, 2019. doi:10.4230/LIPIcs.ITP.2019.10.708

5 Canton: A private, scalable, and composable smart contract platform. https://www.canton.709

io/publications/canton-whitepaper.pdf, 2019.710

6 Canton: Global synchronization beyond blockchain. https://www.canton.io/, 2020.711

7 Corda: Open source blockchain platform for business. https://www.corda.net/, 2020.712

8 Digital Asset. Daml programming language. https://daml.com, 2020.713

9 D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on714

Information Theory, 29(2):198–208, 1983.715

10 Basil Fürer, Andreas Lochbihler, Joshua Schneider, and Dmitriy Traytel. Quotients of bounded716

natural functors. In IJCAR 2020, LNCS. Springer, 2020. To appear.717

11 Ralf Hinze and Johan Jeuring. Weaving a web. J. Funct. Program., 11(6):681––689, 2001.718

doi:10.1017/S0956796801004129.719

12 Gérard Huet. The zipper. Journal of Functional Programming, 7(5):549––554, 1997. doi:720

10.1017/S0956796897002864.721

http://dx.doi.org/10.1007/978-3-319-08970-6_7
http://isa-afp.org/entries/BNF_Operations.html
http://isa-afp.org/entries/BNF_Operations.html
http://isa-afp.org/entries/BNF_Operations.html
https://www.canton.io/publications/csf2019-abstract.pdf
https://www.canton.io/publications/csf2019-abstract.pdf
https://www.canton.io/publications/csf2019-abstract.pdf
http://dx.doi.org/10.4230/LIPIcs.ITP.2019.10
https://www.canton.io/publications/canton-whitepaper.pdf
https://www.canton.io/publications/canton-whitepaper.pdf
https://www.canton.io/publications/canton-whitepaper.pdf
https://www.canton.io/
https://www.corda.net/
https://daml.com
http://dx.doi.org/10.1017/S0956796801004129
http://dx.doi.org/10.1017/S0956796897002864
http://dx.doi.org/10.1017/S0956796897002864
http://dx.doi.org/10.1017/S0956796897002864

A. Lochbihler and O. Marić 19

13 Brian Huffman and Ondřej Kunc̆ar. Lifting and transfer: A modular design for quotients in722

Isabelle/HOL. In Certified Programs and Proofs, volume 8307 of LNCS, pages 131—-146.723

Springer, 2013. doi:10.1007/978-3-319-03545-1_9.724

14 Oleg Kiselyov. Zippers with several holes. http://okmij.org/ftp/Haskell/Zipper2.lhs,725

2011.726

15 Andreas Lochbihler and Ognjen Marić. Authenticated data structures as functors. Archive of727

Formal Proofs, April 2020. http://isa-afp.org/entries/ADS_Functor.html.728

16 Conor McBride. The derivative of a regular type is its type of one-hole contexts, 2001.729

17 Ralph C. Merkle. A digital signature based on a conventional encryption function. In730

Advances in Cryptology (CRYPTO 1987), volume 293 of LNCS, pages 369–378. Springer,731

1987. doi:10.1007/3-540-48184-2_32.732

18 Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi. Authenticated data struc-733

tures, generically. In Principles of Programming Languages (POPL 2014), pages 411––423.734

Association for Computing Machinery, 2014. doi:10.1145/2535838.2535851.735

19 Mizuhito Ogawa, Eiichi Horita, and Satoshi Ono. Proving properties of incremental Merkle736

trees. In Robert Nieuwenhuis, editor, Automated Deduction (CADE 2005), volume 3632 of737

LNCS, pages 424–440. Springer, 2005. doi:10.1007/11532231_31.738

20 Sean Seefried. Automatically generating tamper resistant data structures. Functional Program-739

ming Sydney, http://code.ouroborus.net/fp-syd/past/2017/2017-04-Seefried-Merkle.740

pdf, 2017.741

21 Dmitry Traytel, Andrei Popescu, and Jasmin C. Blanchette. Foundational, compositional742

(co)datatypes for higher-order logic: Category theory applied to theorem proving. In Logic743

in Computer Science (LICS 2012), pages 596—-605. IEEE Computer Society, 2012. doi:744

10.1109/LICS.2012.75.745

22 Bill White. A theory for lightweight cryptocurrency ledgers. https://github.com/746

input-output-hk/qeditas-ledgertheory, 2015.747

23 Jiangshan Yu, Vincent Cheval, and Mark Ryan. DTKI: a new formalized PKI with no trusted748

parties. The Computer Journal, 59(11):1695–1713, November 2016. arXiv: 1408.1023. URL:749

http://arxiv.org/abs/1408.1023, doi:10.1093/comjnl/bxw039.750

http://dx.doi.org/10.1007/978-3-319-03545-1_9
http://okmij.org/ftp/Haskell/Zipper2.lhs
http://isa-afp.org/entries/ADS_Functor.html
http://dx.doi.org/10.1007/3-540-48184-2_32
http://dx.doi.org/10.1145/2535838.2535851
http://dx.doi.org/10.1007/11532231_31
http://code.ouroborus.net/fp-syd/past/2017/2017-04-Seefried-Merkle.pdf
http://code.ouroborus.net/fp-syd/past/2017/2017-04-Seefried-Merkle.pdf
http://code.ouroborus.net/fp-syd/past/2017/2017-04-Seefried-Merkle.pdf
http://dx.doi.org/10.1109/LICS.2012.75
http://dx.doi.org/10.1109/LICS.2012.75
http://dx.doi.org/10.1109/LICS.2012.75
https://github.com/input-output-hk/qeditas-ledgertheory
https://github.com/input-output-hk/qeditas-ledgertheory
https://github.com/input-output-hk/qeditas-ledgertheory
http://arxiv.org/abs/1408.1023
http://dx.doi.org/10.1093/comjnl/bxw039

	Introduction
	Inclusion Proofs for Authenticated Data Structures
	Modularly Constructing Forests of Authenticated Data Structures
	Blindable position
	Example: Canton transaction trees
	Composition
	Inductive generalization for least fixpoints
	Concrete Merkle functors
	Case study: Merkle rose trees and Canton's transactions

	Creating Inclusion Proofs
	Related Work
	Conclusion and Future Work

