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Abstract9

Merkle trees are ubiquitous in blockchains and other distributed ledger technologies (DLTs). They10

guarantee that the involved systems are referring to the same binary tree, even if each of them knows11

only the cryptographic hash of the root. Inclusion proofs allow knowledgeable systems to share12

subtrees with other systems and the latter can verify the subtrees’ authenticity. Often, blockchains13

and DLTs use data structures more complicated than binary trees; authenticated data structures14

generalize Merkle trees to such structures.15

We show how to formally define and reason about authenticated data structures, their inclusion16

proofs, and operations thereon as datatypes in Isabelle/HOL. The construction lives in the symbolic17

model, i.e., we assume that no hash collisions occur. Our approach is modular and allows us to18

construct complicated trees from reusable building blocks, which we call Merkle functors. Merkle19

functors include sums, products, and function spaces and are closed under composition and least20

fixpoints. As a practical application, we model the hierarchical transactions of Canton, a practical21

interoperability protocol for distributed ledgers, as authenticated data structures. This is a first22

step towards formalizing the Canton protocol and verifying its integrity and security guarantees.23
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1 Introduction30

Authenticated data structures (ADSs) allow systems to use succinct digests to ensure that31

they are referring to the same data structure, even if each system knows only a part of the32

data structure. The benefits are twofold. First, this saves storage and bandwidth: the systems33

can store only the structure’s parts that are relevant for them, and transmit just digests, not34

the whole structure. Blockchains use ADSs for this reason, both in the core design and in35

various optimizations (e.g., Bitcoin’s lightweight clients). Second, ADSs can keep parts of36

the structure confidential to the subset of the systems involved in processing the structure.37

For example, distributed ledger technology (DLT) promises to keep multiple organizations38

synchronized on their shared business data. Synchronization requires transactions, i.e.,39

atomic changes to the shared state. Yet organizations often do not want to share their full40

state with all involved parties. Some DLT protocols such as the Canton interoperability41

protocol [7] and Corda [8] leverage ADSs to provide both transactions and varying levels of42

confidentiality. Formal reasoning about blockchains and DLTs thus often requires mechanised43

theories of ADSs. In fact, the formalization of Canton was the starting point for this work.44
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5:2 Authenticated Data Structures as Functors in Isabelle/HOL

tx: Bob and Alice complete the purchase contract
visible to: Alice, Bob

subtx: Alice instructs Bank to
move money to Bob’s account
visible to: Alice, Bob, Bank

subtx: Bob instructs DMV to
transfer the car title to Alice
visible to: Alice, Bob, DMV

Figure 1 A hierarchical Canton transaction. DMV is the de-
partment of motor vehicles.

Canton
domain

Bank DMV

Alice Bob

Figure 2 Example topol-
ogy of a Canton-based dis-
tributed ledger

Merkle trees [20] are the prime example of an ADS. They are binary trees of digests, i.e.,45

cryptographic hashes. Leaves contain data hashes, and inner nodes combine their children’s46

hashes using a hash function h. An inclusion proof, also known as a Merkle proof, shows that47

a tree t includes a subtree st. It consists of the roots of t and st and the siblings of nodes on48

the path between these roots. The proof is valid if the hash of every node on the path is h49

of the children’s hashes. It is sound, i.e., does prove inclusion, if h is collision-resistant. It50

keeps the rest of the tree confidential if h is preimage-resistant and the hashed data contains51

sufficient entropy.52

ADSs [21] generalize these ideas to arbitrary finite tree data structures, whose hierarchies53

can conveniently encode more complex relationships between data. Our main example are54

the hierarchical transactions [4] in the Canton protocol. Suppose that Alice wants to sell a55

car title to Bob. Figure 1 shows the corresponding Canton transaction for exchanging the56

money and the title. (We take significant liberties in the presentation of Canton in this paper57

and focus on parts relevant for the construction of ADSs and for reasoning about them.)58

The transaction is generated from a smart contract (written in the DAML [10] programming59

language) implementing the purchase agreement.60

The transactions’ hierarchical nature benefits Canton in three crucial ways. First, complex61

transactions can be composed from simpler building blocks, which are transactions themselves.62

The purchase transaction above composes two such sub-transactions: the money transfer63

and the title transfer. Second, participants learn only the contents of subtransactions they64

are involved in. Above, the Bank only sees the money transfer, but not what Alice bought;65

similarly, the DMV does not learn the car’s price. This also improves scalability, as everyone66

processes only the subtransactions they are involved in. Third, the hierarchy enables correct67

delegation in Canton’s built-in authorization logic even in a Byzantine setting. Canton68

encodes this hierarchy, enriched with some additional data, in ADSs, and exchanges inclusion69

proofs for subtransactions. We give more details throughout the paper, but summarize the70

resulting requirements on the formalization here:71

1. It must support ADS digests, to check that two inclusion proofs refer to the same ADS.72

This allows the example transaction to commit atomically, even if the Bank and the DMV73

see only a part of it.74

2. Proofs must enable proving inclusion for multiple subtrees simultaneously, not just single75

subtree as standard. Canton uses such inclusion multi-proofs to save bandwidth.76

3. Inclusion proofs refering to the same ADS must be mergeable into one multi-proof. In the77

example of Figure 1, Alice receives inclusion proofs for the entire transaction as well as78

both sub-transactions, and merges them to a single data structure, the entire transaction.79

In this work, we show how to modularly define ADSs as datatypes in Isabelle/HOL. The80

modular approach is our main theoretical contribution. It allows us to construct complicated81
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trees from small reusable building blocks, for which properties are easy to prove. To that end,82

we consider authenticated data structures as so-called Merkle functors and equip them with83

appropriate operations and their specifications. The class of Merkle functors includes sums,84

products, and function spaces, and is closed under composition and least fixpoints. Hence,85

the construction works for any inductive datatype (sums of products and exponentials).86

Concrete functors are defined as algebraic datatypes using Isabelle/HOL’s datatype package87

[3]. This shallow embedding is a significant practical benefit, as it enables the use of Isabelle’s88

rich reasoning infrastructure for datatypes. The construction lives in the symbolic model,89

i.e., we assume that no hash collisions occur. Finally, we show that the theory is suitable90

for constructing concrete real-world instances such as Canton’s transaction trees. Our91

formalization is available in the Isabelle AFP [18].92

The rest of the paper is structured as follows. In Section 2, we provide the background93

on Canton and use it to motivate our abstract interface for ADSs. Section 3 shows how to94

construct such interfaces for tree-like structures in a modular fashion. Section 4 demonstrates95

how to create inclusion proofs for general rose trees and Canton transactions in particular.96

We discuss the related work in Section 5 and conclude in Section 6.97

2 Operations on Authenticated Data Structures98

We now present the interfaces for ADSs, motivated by their application to Canton. Figure 299

shows a suitable Canton-based deployment for our example transaction. The participants100

transact using Canton, a distributed commit protocol similar to a two-phase commit protocol.101

The protocol is run over a Canton domain operated by a third party that acts as the commit102

coordinator. While the participants may be Byzantine, the domain is assumed to be honest-103

but-curious. That is, it is trusted to correctly execute the protocol, but it should not learn104

the contents of a transaction (e.g., how much Alice pays to Bob). Unlike in most other DLT105

solutions, participants share business data only on a need-to-know basis [6]. In particular,106

the domain receives business data only in encrypted form or as a digest. The domain may107

only learn the metadata that allows the protocol to tolerate Byzantine participants.108

These privacy requirements motivate the hierarchical transactions that Canton uses,109

which are encoded in transaction trees. The tree for the example transaction from Figure 1110

is shown in Figure 3. Each (sub)-transaction of Figure 1 is turned into a view in Figure 3,111

which consists of the view data and view metadata. For example, the node labeled by 1 in112

Figure 3 is the view corresponding to the top-level transaction in Figure 1. Its first two113

children contain the view’s data and metadata. The metadata lists who is affected by the114

view and should therefore participate in the commit protocol (here, Alice and Bob), and is115

shared with Alice, Bob and the domain. The view data contains the confidential data with116

the actual state updates, and is shared only with Alice and Bob. This view also has two117

subviews, which correspond to the sub-transactions in Figure 1 as expected. Views can have118

an arbitrary number of subviews; e.g., the views labeled by 1.1 and 1.2 have no subviews.119

Additionally, the two leaf children of the tree root store metadata describing transaction-120

wide parameters that apply to all views. The first is visible to the domain and the participants121

involved in the transaction; the second only to the latter. Formally, the transaction tree can be122

modelled by the following datatypes, for some types common-metadata, participant-metadata,123

view-metadata, and view-data whose contents are irrelevant for this paper.124

datatype view = View 〈view-metadata〉 〈view-data〉 (subviews: 〈view list〉)125

datatype transaction =126

Transaction 〈common-metadata〉 〈participant-metadata〉 (views: 〈view list〉)127

FMBC 2020
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1participant
metadata

common
metadata

1.1offer acceptance
view data

offer acceptance
view metadata

money transfer
view data

money transfer
view metadata

1.2

title transfer
view metadata

title transfer
view data

Figure 3 Simplified Canton transaction tree for car title sale of Figure 1

In Figure 3, the Transaction and View constructors become the inner nodes (black circles)128

and the data sits at the leaves (grey rectangles).129

The participants and the domain can use a root hash of an ADS over a Transaction to130

ensure that they are all referring to the same transaction tree. When constructing ADS131

hashes, we need to consider ADSs with multiple roots (i.e., forests) rather than just a single132

root like in a Merkle tree. For example, computing the hash of an inner node in a Merkle133

tree requires taking a hash over both of its children, i.e., over the forest constructed from134

its two children. The concrete hash operation depends on the shape of the forest (a pair in135

this case). The new root is again a degenerate forest of a single tree with a single root hash.136

This view underlies our modular construction principle in Section 3.137

In this paper, we use the following Isabelle notations: Type variables ′a, ′b are prefixed138

by ′ like in Standard ML. Type constructors like list are usually written postfix as in string139

list. Exceptions are the function space ⇒, sums +, and products ×, all written infix. The140

notation t :: τ denotes that the term t has the type τ . In our construction, we will use the141

following decorations. Raw data to be arranged in an ADS is written as usual, e.g., ′a, ′a list.142

Hashes and forests of hashes carry a subscript h as in ′ah. We leave hashes for now abstract143

as type variables and define them only in Section 3. Since the root hash identifies an ADS,144

we represent ADSs by their hashes.145

A root hash makes communication more efficient, but we require more. For example,146

the Bank does not know the contents or participants of view 1.2; the domain hides the147

latter. Still, the Bank must ensure that the view 1.1 is really included in the transaction148

tree. In general, the views visible to a participant are called the participant’s projection of149

the transaction. Canton aims to achieve the following integrity guarantee [4]: There exists a150

shared ledger that adheres to the underlying DAML smart contracts such that its projection151

to each honest participant consists exactly of the updates that have passed the participant’s152

local checks. This requires the ability to prove that a substructure is included in a root hash.153

Inclusion proofs are therefore the main workhorse in our formalization and the focus of154

this paper. We denote the type of inclusion proofs over the source type with the subscript m,155

e.g., ′am, ( ′am,
′ah) treem. We need two operations on inclusion proofs:156

1. Computing the (forest of) root hashes of an inclusion proof, in order to identify the ADS157

to which the inclusion proof corresponds.158

2. Merging two inclusion proofs with the same root hash.159

Accordingly, we introduce two type synonyms for these operations:160

type_synonym ( ′am,
′ah) hash = 〈 ′am ⇒ ′ah〉161

type_synonym ′am merge = 〈 ′am ⇒ ′am ⇒ ′am option〉162

We model the merge operation as a partial function using the option that returns None163
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iff the inclusion proofs have different (forests of) root hashes. We require that merging is164

idempotent, commutative, and associative. The merge operation makes inclusion proofs165

with the same hash into a semi-lattice, where the induced order treats an inclusion proof as166

smaller than another if it reveals less. In that case, we say that the smaller is a blinding of167

the larger inclusion proof.168

type_synonym ′am blinding-of = 〈 ′am ⇒ ′am ⇒ bool〉169

I Definition 1. A Merkle interface consists of three operations h :: ( ′am,
′ah) hash and m ::170

′am merge and bo :: ′am blinding-of with the following properties:171

1. Merge respects hashes, i.e., (h a = h b) = (∃ ab. m a b = Some ab).172

2. Merge is idempotent, i.e., m a a = Some a.173

3. Merge is commutative, i.e., m a b = m b a.174

4. Merge is associative, i.e., m a b >>= m c = m b c >>= m a,175

where (>>=) is the monadic bind on the option type.176

5. Blinding is induced by merge, i.e., bo a b = (m a b = Some b).177

So merge is the least upper bound in the blinding relation:178

(m a b = Some ab) = (bo a ab ∧ bo b ab ∧ (∀ u. bo a u −→ bo b u −→ bo ab u))179

Also, the equivalence closure of the blinding relation gives the equivalence classes of the180

inclusion proofs under the hash function: equivclp bo = vimage2p h h (=) where equivclp R181

denotes the equivalence closure of R and vimage2p f g R = (λx y. R (f x) (g y)) the preimage182

of a relation under a pair of functions.183

Isabelle/HOL’s term language is not expressive enough to automatically create the ADS184

and inclusion proof types of arbitrary tree-shaped data, define the interface’s operation, or185

build inclusion proofs for subtrees of tree-shaped data. Instead, in the next two sections, we186

show how to systematically construct these types and operations.187

3 Modularly Constructing Forests of Authenticated Data Structures188

In this section, we develop the theory to modularly construct ADSs, their inclusion proofs as189

HOL datatypes, and Merkle interfaces over them. We start with the concept of a blindable190

position (Section 3.1), which models an ADS node, and show how we obtain ADSs for191

Canton’s transaction trees by introducing blindable positions in the right spots of the192

datatype definitions (Section 3.2).193

We have shown how the Merkle interface specification is preserved by type composition194

(Section 3.3). It is, however, not inductive and therefore not preserved by datatype construc-195

tions. We thus generalize it and show that functor composition and least fixpoint preserve196

the generalization (Section 3.4). Finally, we show that sums, products and function spaces197

preserve the generalization (Section 3.5) and compose these preservation results to obtain198

the Merkle interface properties for Canton transactions (Section 3.6).199

3.1 Blindable position200

A blindable position represents a node (inner node or leaf) in an ADS. Recall that201

“blinding” allows an inclusion proof to hide the node contents by using just the root hash of202

the node. In this work, we model such hashes symbolically, that is, as injective functions, and203

assume that no hash collisions occur. We do not assume surjectivity though: some hashes do204

not correspond to any value. We model such values as garbage coming from a countable set205

(the naturals). This suffices as digests contain only a finite amount of information.206

FMBC 2020
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datatype ′ah blindableh = Content 〈 ′ah〉 | Garbage 〈nat〉207

Since the hash function is injective, we can identify the values ′a with a subset of the208

hashes, namely those of form Content. Accordingly, we could also have written ′a blindableh209

instead of ′ah blindableh. However, as an ADS contains hashes of hashes, ′ah is more accurate210

here. For example, a degenerate Merkle tree with a single leaf, which stores some data x, has211

the root hash Content x.212

What does an inclusion proof for this tree look like? It can take two forms. Either it213

reveals x, i.e., the leaf is not blinded, or it does not reveal x, i.e., the leaf is blinded. The214

following datatype formalizes these cases.215

datatype ( ′am,
′ah) blindablem = Unblinded 〈 ′am〉 | Blinded 〈 ′ah blindableh〉216

Similar to blindableh, inclusion proofs may be nested, e.g., if a Merkle tree leaf contains217

another Merkle tree as data. We therefore use the inclusion proof type variable ′am instead218

of ′a. In the second case, the hash could be garbage, so we use ′ah.219

Note that our blindableh hashes are typed: hashes of those ADSs that store ints and those220

that store strings in their leaves always differ. In the real world, they can be equal as hashes221

are just bitstrings. However, for systems which follow security best practices, type flaw222

attacks lead to different hashes unless a hash collision occurs. Garbage hashes adequately223

model such confusion possibilities: a hash of the int Leaf would be treated as garbage in the224

type of hashes for the ADS of strings. This is adequate for inclusion proofs because we care225

about the contents of a hash only if the position is unblinded and thus of shape Content.226

Having introduced the types for blindable positions, we now define the corresponding227

operations and show that they satisfy the specification merkle-interface. The hash operation228

hash-blindable :: ( ′am,
′ah) hash ⇒ (( ′am,

′ah) blindablem,
′ah blindableh) hash converts229

an inclusion proof into the root hash of the tree. It is parameterized by a hash function230

ha that converts nested inclusion proofs ′am into their root hashes ′ah. Its definition is231

straightforward: for unblinded nodes, apply ha, and for blinded nodes, just take the contained232

hash. Similarly, the blinding order blinding-of-blindable :: ( ′am,
′ah) hash ⇒ ′am blinding-of233

⇒ ( ′am,
′ah) blindablem blinding-of is parametrized by the hash ha and the blinding order234

boa for the nested inclusion proofs, as well as the blindable inclusion proofs to be compared.235

If both of the compared inclusion proofs unblind the contents, then we compare the contents236

using boa. Otherwise, the first argument is a blinding of the second one only if it is blinded,237

and if its hash matches the hash of the second argument. Merging of blindable positions238

is also similar. If both positions are unblinded, merge-blindable tries to merge the contents.239

If both are blinded, it succeeds iff the hashes are the same. Otherwise, it checks that the240

hashes are the same and, if so, returns the unblinded version. It is straightforward to show241

the following lemma.242

I Lemma 2. If ha, boa, and ma jointly form a Merkle interface, then so do hash-blindable243

ha, blinding-of-blindable ha boa, and merge-blindable ha ma.244

3.2 Example: Canton transaction trees245

We now illustrate how to use blindableh and blindablem to define the ADSs and inclusion246

proofs for the Canton transaction trees from Section 2. As shown in Figure 3, the trans-247

action tree contains a node for the transaction tree as a whole, every view, and every leaf248

(common-metadata, participant-metadata view-metadata, and view-data). Yet, the datatype249

declarations do not contain the information what should become a separate node in the ADS.250

To make the construction systematic, we start from an isomorphic representation of view251
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and transaction, where we mark the blindable positions with the type constructor blindable,252

which is just the identity functor:253

datatype view = View254

〈((view-metadata blindable × view-data blindable) × view list) blindable〉255

datatype transaction = Transaction256

〈((common-metadata blindable × participant-metadata blindable) × view list) blindable〉257

To define the hashes and inclusion proofs, we simply replace each type constructor τ with258

its counterparts τh and τm. For views, this looks as follows. Here ×h, ×m, listh, and listm259

are type synonyms for × and list; Section 3.5 introduces them formally. We abuse notation260

by writing view-metadatah and view-metadatam for the blindable position of view-metadata.261

type_synonym view-metadatah = 〈view-metadata blindableh〉262

type_synonym view-datah = 〈view-data blindableh〉263

datatype viewh = Viewh 〈((view-metadatah ×h view-datah) ×h viewh listh) blindableh〉264

type_synonym view-metadatam = 〈(view-metadata, view-metadata) blindablem〉265

type_synonym view-datam = 〈(view-data, view-data) blindablem〉266

datatype viewm = Viewm267

〈((view-metadatam ×m view-datam) ×m viewm listm,268

(view-metadatah ×h view-datah) ×h viewh listh) blindablem〉269

These types nest hashes and inclusion proofs: A view node, e.g., nests hashes and inclusion270

proofs for the metadata, the data, and all the subviews. In particular, the viewh and viewm271

datatypes recurse through the blindableh and blindablem type constructors. This works272

because blindableh and blindablem are bounded natural functors (BNFs) [3]. In fact, this273

transformation works for any datatype declaration thanks to the compositionality of BNFs.274

The construction for transaction trees is similar.275

3.3 Composition276

Having defined the types of ADSs, we next must define the operations on ADSs and prove277

that they form a Merkle interface. Doing so directly is possible, but prohibitively complex.278

Instead, we modularize the proofs following the structure of the types. We can derive279

preservation lemmas for all involved type constructors analogous to merkle-blindable.280

The preservation lemmas are compositional by construction: if ′ah τh/( ′am,
′ah) τm281

and ′bh σh/( ′bm,
′bh) σm satisfy merkle-interface, then so does their composition ′ah τh282

σh/(( ′am,
′ah) τm,

′ah τh) σm. For example, we can define the instance for blindable nodes283

of type view-data compositionally. First, we exploit the fact that every nullary functor284

satisfies merkle-interface with the discrete ordering (=), hash id and merge defined only for285

equal operands. Second, we compose view-data, viewed as a nullary functor with blindable.286

For example, we define:287

abbreviation hash-view-data :: 〈(view-datam, view-datah) hash〉 where288

〈hash-view-data ≡ hash-blindable id〉289

We perform the same constructions on view-metadata, and then use composition for the290

pair view-metadata × view-data, to get the following (the operations for products will be291

introduced in Section 3.5).292

I Lemma 3. The following three operations form a Merkle interface:293

hash-prod hash-view-metadata hash-view-data294

blinding-of-prod blinding-of-view-metadata blinding-of-view-data295

merge-prod merge-view-metadata merge-view-data296

FMBC 2020
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3.4 Inductive generalization for least fixpoints297

The view datatype is the least fixpoint of the functor298

′a F = ((view-metadata blindable × view-data blindable) × ′a list) blindable299

and so are viewh and viewm of analogous functors Fh and Fm. Composition gives us a300

preservation theorem for F, but we need another one for least fixpoints.301

Yet, the Merkle interface specification is not inductive and thus not preserved by fixpoints.302

We now generalize it. Simultaneously, we make the generalization more amenable to Isabelle’s303

proof automation by focusing on the blinding order and characterizing merge as its join. Our304

generalization splits the Merkle interface into three:305

1. The interface blinding-respects-hashes assumes that bo ≤ vimage2p h h (=) where (≤)306

denotes inclusion on binary predicates.307

2. The interface blinding-of-on formalizes the order properties of the blinding relation bo:308

Reflexivity bo x x, transitivity bo x y =⇒ bo y z =⇒ bo x z, and antisymmetry bo x y309

=⇒ bo y x =⇒ x = y hold for all x ∈ A and all y, z: The restriction of x to the set A310

makes the statement inductive, as A can be instantiated to the set of smaller values in311

structural induction proofs.312

3. The interface merge-on extends blinding-of-on applied to the type’s universal set UNIV313

with the characterization of merge as the join, but now again restricted by a set A. In314

the unrestricted case A = UNIV, merge-on is equivalent to the Merkle interface.315

We are now ready to define the class of Merkle functors. For readability, we only spell316

out the case of unary functors. The generalization to n-ary functors is as expected.317

I Definition 4 (Merkle functor). A unary BNF Fh and binary BNF Fm constitute a unary318

Merkle functor if there exist operations:319

hash ′F :: (( ′ah,
′ah) Fm,

′ah Fh) hash and320

blinding-of F :: ( ′am,
′ah) hash ⇒ ′am blinding-of ⇒ ( ′am,

′ah) Fm blinding-of and321

mergeF :: ( ′am,
′ah) hash ⇒ ′am merge ⇒ ( ′am,

′ah) Fm merge322

with the following properties323

Monotonicity
bo ≤ bo ′

blinding-of F h bo ≤ blinding-of F h bo ′

Congruence
∀ a∈A. ∀ b. m a b = m ′ a b

∀ x ∈ {y. set1-Fm y ⊆ A}. ∀ b. mergeF h m x y = mergeF h m ′ x y

Hashes
blinding-respects-hashes h bo

blinding-respects-hashes (hashF h) (blinding-of F h bo)

Blinding order
blinding-of-on A h bo

blinding-of-on {x. set1-Fm x ⊆ A} (hashF h) (blinding-of F h bo)

Merge
merge-on A h bo m

merge-on {x. set1-Fm x ⊆ A} (hashF h) (blinding-of F h bo) (mergeF h m)

324

where hashF h = hash ′F ◦ map-Fm h id for the BNF mapper map-Fm, and where the BNF325

setter set1-Fm x returns all atoms of type ′am in x :: ( ′am,
′ah) Fm.326

Every Merkle functor preserves the Merkle interface specification: set A = UNIV in the327

merge property and use the equivalence between the Merkle interface and merge-on. With328

this, we now state the main theoretical contribution of this paper.329
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I Theorem 5. Merkle functors of arbitrary arity are closed under composition and least330

fixpoints.331

Proof. (Sketch) Closure under composition is obvious from the shape of the properties and332

the fact that BNFs are closed under composition. For closure under least fixpoints, we333

consider a functor F and its least fixpoint T through one of F ’s arguments. say datatype334

T = T 〈T F 〉, and similarly for Th and Tm. The operations are defined as follows, where we335

omit all Merkle operation parameters for type parameters that are not affected.336

The hash operation hash-T ′ is defined by primitive recursion:337

hash-T ′ (Tm x) = Th (hash-F ′ (map-Fm hash-T ′ x)).338

The blinding order blinding-of-T is defined inductively by the following rule:339

blinding-of-F hash-T blinding-of-T x y
blinding-of-T (Tm x) (Tm y)

340

Monotonicity ensures that blinding-of-T is well-defined.341

Merge merge-T is defined by well-founded recursion over the subterm relation on Tm:342

merge-T (Tm x) (Tm y) = map-option Tm (merge-F hash-T merge-T x y)343

Congruence ensures that merge-F calls merge-T recursively only on smaller arguments.344

Monotonicity and preservation of blinding-respects-hashes are proven by rule induction on345

blinding-of-T. Congruence, blinding-of-on, and merge-on are shown by structural induction346

on the argument that is constrained by A. J347

Isabelle/HOL lacks the abstraction over type constructors necessary to formalize this348

theorem. As our approach also translates to theorem provers with more expressive type349

systems (e.g., Lean, Coq), the theorem could be formalized there. For Isabelle/HOL, we350

adopt an approach similar to Blanchette et al. [3]. We axiomatize a binary Merkle functor351

and carry out the construction and proofs for least fixpoints and composition, illustrating how352

the definition and proofs generalize to functors with several type arguments. The example353

ADS constructions in Section 3.6 then merely adapt these proofs to the concrete functors at354

hand.355

3.5 Concrete Merkle functors356

We now present concrete Merkle functors. They show that the class of Merkle functors is357

sufficiently large to be of interest. In particular, it contains all inductive datatypes (least358

fixpoints of sums of products). We have formalized all of the following.359

The discrete functor from Section 3.3 with hash operation id and the discrete blinding360

order (=) is a nullary Merkle functor.361

Blindable positions blindableh and blindablem are a unary Merkle functor.362

Sums and products are binary Merkle functors. We set ×h = ×m = × and +h = +m363

= +. The hash operations hash-prod and hash-sum are the mappers map-prod and364

map-sum, respectively. The blinding orders blinding-of-prod and blinding-of-sum are the365

relators rel-prod and rel-sum. The merge operation merge-of-prod attempts to merge366

each component separately, while merge-of-sum can only merge left and left, or right and367

right values. (Formally, ×m and +m should take four type arguments. However, as sums368

and products do not themselves contain blindable positions, the type arguments ′ah and369

′bh are ignored in inclusion proofs and we therefore omit them.)370
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The function space ′a ⇒ ′b is a unary Merkle functor in the codomain. Like for sums371

and products, ⇒h = ⇒m = ⇒ and no additional type arguments are added. Hashing is372

function composition and the blinding order is pointwise.373

3.6 Case study: Merkle rose trees and Canton’s transactions374

Theorem 5 shows that all datatypes built from the Merkle functors in the previous section are375

Merkle functors. We apply the construction sketched in the proof to concrete datatypes that376

build on top of each other. For example, lists, rose trees [24], and Canton transactions are377

all Merkle functors. We prove that ′a list is a Merkle functor with the help of an isomorphic378

data type that is the least fixpoint µX . 1 + ′a × X and following the fixpoint construction379

of Theorem 5. We transfer the definitions and theorems to list using the transfer package380

[16]. Rose trees are then given by the datatype381

datatype ′a rose-tree = Tree 〈( ′a × ′a rose-tree list) blindable〉382

Applying the construction gives us Merkle rose trees with the corresponding operations and383

their properties.384

datatype ′ah rose-treeh = Treeh 〈( ′ah ×h
′ah rose-treeh listh) blindableh〉385

datatype ( ′am,
′ah) rose-treem = Treem386

〈( ′am ×m ( ′am,
′ah) rose-treem listm,

′ah ×h
′ah rose-treeh listh) blindablem〉387

From here, it is only a small step to transactions in Canton. Views are isomorphic to Merkle388

rose trees where the data at the nodes is instantiated, i.e., composed, with the Merkle functor389

corresponding to view-metadata blindable × view-data blindable. Then, transactions compose390

the Merkle functor for common-metadata blindable × participant-metadata blindable × - list391

with views. We have lifted our machinery from these raw Merkle functors to the datatypes392

viewm and transactionm using the lifting and transfer packages [16].393

4 Creating Inclusion Proofs394

So far, given a tree-like data type ′t, we showed how to systematically construct the corre-395

sponding type of ADSs ′th and their inclusion proofs ′tm. To make use of this construction396

in practice, we must also be able to create values of type ′tm from values of type ′t. As397

in the case of our composition and fixpoint theorem, HOL’s lack of abstraction over type398

constructors makes it impossible to express this process in HOL in its full generality. Instead,399

we sketch how it works on rose trees, as these are the most general type of tree in terms of400

branching. The construction can be easily adapted for other kinds of trees.401

There are three basic operations:402

Digesting, hash-source-tree, returns the root hash for a rose tree.403

Embedding, embed-source-tree returns the inclusion proof that proves inclusion of the404

whole tree.405

Fully blinding, blind-source-tree returns the inclusion proof that proves no inclusion at all406

(the root is blinded).407

Digesting and fully blinding conceptually do the same thing, but their return types ( ′ah408

rose-treeh and ( ′am,
′ah) rose-treem) differ. As rose trees are parameterized by their node409

label type, digesting, embedding, and fully blinding take parameters which digest, embed, or410

fully blind the node labels. The expected properties hold: the embedded and fully blinded411

versions of the same rose tree have the same hash, namely the digest of the rose tree, and412

the former is a blinding of the latter.413
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The more interesting operations concern creating an inclusion proof for a subtree of a414

tree. For example, with Canton’s hierarchical transactions, we would like to prove that a415

subtransaction is really part of the entire transaction. Such a proof consists of the subtree416

itself, together with a path connecting the tree’s root to the subtree’s root. As noticed417

by Seefried [23], this corresponds to a zipper [15] focused on the subtree. This connection418

enables simple manipulation of such proofs in a functional programming style, well-suited to419

HOL. The zippers for rose trees are captured by the following types.420

type_synonym ′a path-elem = 〈 ′a × ′a rose-tree list × ′a rose-tree list〉421

type_synonym ′a path = 〈 ′a path-elem list〉422

type_synonym ′a zipper = 〈 ′a path × ′a rose-tree〉423

Given a zipper that focuses on a node, we define the operations that turn rose trees into424

zippers and vice versa.425

tree-of-zipper ([], t) = t426

tree-of-zipper ((a, l, r) · z, t) = tree-of-zipper (z, Tree (a, l @ t · r))427

zipper-of-tree t ≡ ([], t)428

The zippers for Merkle rose trees, i.e., inclusion proofs for rose trees, have the exact same429

shape, except that all the type constructors are subscripted by m and have another type430

parameter capturing the type of hashes (e.g., ( ′am,
′ah) zipperm). Like for rose trees, we431

define operations that blind and embed a path respectively. This way, zippers on rose trees432

can be turned into zippers on Merkle rose trees. As expected, starting with a rose tree zipper,433

blinding and embedding its path yields a Merkle rose tree with the same hash. Furthermore,434

reconstructing a Merkle rose tree from an embedded rose tree zipper gives the same result as435

first reconstructing the rose tree and then embedding it into a Merkle rose tree. Finally, we436

show that reconstruction of trees from zippers respects the blinding relation if the Merkle437

operations on the labels satisfy merkle-interface:438

blinding-of-tree h bo (tree-of-zipperm (p, t)) (tree-of-zipperm (p, t ′)) =439

blinding-of-tree h bo t t ′440

Inclusion proofs derived from zippers prove inclusion of a single subtree of the rose tree.441

The general case of several subtrees can be reduced to the single-subtree case using merging.442

When we want to create an inclusion proof for several subtrees, we create an inclusion proof443

for each individual subtree and then merge them into one.444

To that end, we have defined operations to turn a rose tree into a zipper focused on445

the root and into zippers into its subtrees. Then, the function zippers-rose-tree enumerates446

the inclusion proof zippers for all nodes of a rose tree using those two operations. This447

allows us to easily model the messages that the initiator of a transaction sends in the first448

phase of Canton’s commit protocol. The initiator constructs all zippers for the views in449

the transaction tree, and then turns each such zipper into an inclusion proof. Finally, the450

initiator merges each view proof with the proof from the zipper for the transaction metadata451

and ships it to the recipients.452

At the end of the two-phase commit protocol, the domain’s commit message contains an453

inclusion proof of the view metadata for all the views that the participant should have received.454

The participant can decide whether it has received all views it was supposed to receive, it455

compares this inclusion proof against the merged inclusion proofs that it had received from456

the initiator, using the inclusion proof order blinding-of-transaction on transactions.457
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5 Related Work458

Miller et al. developed a lambda calculus with authentication primitives for generic tree459

structures [21]. The calculus was formalized in Isabelle/HOL by Brun and Traytel [5]. In the460

calculus, the programmer annotates the structures with authentication tags. Given a value461

of such a structure, and a function operating on it, their presented method automatically462

creates a correctness proof accompanying a result. The proof allows a verifier that holds463

only a digest of values with authentication tags (but not the values themselves) to check464

the function’s result for correctness. The proof is a stream of inclusion proofs, one for each465

tagged value that the function operates on. Merging of inclusion proofs is not considered,466

although the streams can be optimized by sharing. Unlike Brun and Traytel [5] who use467

a deep embedding with the Nominal library, our embedding is shallow. Furthermore, our468

ADSs can provide inclusion proofs for multiple sub-structures simultaneously. However, we469

do not aim to derive generic correctness proofs for functions on the data structures.470

Several other works formalize (binary) Merkle trees. White [25] formalized sparse Merkle471

trees [9] as part of a Coq model of a cryptographic ledger. An asset belongs to an address if472

the address encodes a path in the sparse Merkle tree from the root node to a leaf with the473

asset. A merge operation allows a single Merkle tree to provide several inclusion proofs. Our474

generic development can be instantiated to cover this structure. Yu et al. [26] use Merkle475

constructions on different binary trees to implement logs with inclusion and exclusion proofs.476

The constructions are proved correct using a pen-and-paper approach. The proved properties477

are then used in the Tamarin verification tool to analyze a security protocol. Ogawa et al478

[22] formalize binary Merkle trees as used in a timestamping protocol. They automatically479

verify parts of the protocol using the Mona theorem prover.480

As part of the Everest project, HACL∗ contains a formal verification of balanced binary481

Merkle trees [13]. The balanced trees represent a sequence of hashes, which is padded with482

dummy values to a power of 2. A reduction proof shows that hash collisions between root483

hashes can be traced back to hash collisions of the underlying hash function. The main484

focus is on a refinement to an efficient executable implementation. It would be interesting to485

investigate whether and how their reduction-proof approach to dealing with hash collisions486

can be generalized compositionally to our general ADS setting.487

Seefried [23] observed that inclusion proofs in a Merkle tree correspond to Huet-style488

zippers [15], where the subtrees in zipper context have been replaced by the Merkle root489

hashes. McBride showed that zippers represent one-hole contexts [19]. In this analogy, our490

inclusion multi-proofs correspond to contexts with arbitrarily many holes. These many-hole491

zippers must not be confused with Kiselyov’s zippers [17] and Hinze and Jeuring’s webs [14],492

which are derived from the traversal operation rather than the data structure .493

6 Conclusion and Future Work494

We have presented a modular construction principle for authenticated data structures over495

tree-shaped HOL datatypes (i.e., functors), and basic operations over these structures. The496

class of supported functors includes sums, products, and functions, and is closed under497

composition and least fixpoints. The supported operations are root hash computations and498

merging of inclusion proofs. We showed how to instantiate the construction to rose trees, as499

well as to real-world structures used in Canton, a Byzantine fault tolerant commit protocol.500

The ongoing formalization of the Canton protocol will continue to test our abstractions501

and trigger further improvements. As noted earlier, ADSs not only improve storage efficiency,502

but also provide confidentiality. For example, Canton uses them to keep parts of a transaction503
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confidential to a subset of the transaction’s participants. However, reasoning about confi-504

dentiality is not straightforward. As hashing is injective, we can simply write inv h in HOL505

to invert hash functions. In fact, our current model does not even distinguish between the506

authenticated data structure and its digest because of this. A sound confidentiality analysis507

must therefore restrict the adversary using an appropriate calculus, e.g., a Dolev-Yao style508

deduction relation [11]. The analysis must take into account situations such as a Merkle tree509

node with two children with identical hashes; unblinding one child automatically unblinds the510

other. However, our representation distinguishes between the two, which might represent a511

problem. Another situation where this might be a problem is when merging inclusion proofs512

for commutative structures. One option is to consider Merkle functors as quotients with513

respect to a normalization function that collects all unblinding information and propagates514

the unblinding across the whole inclusion proof. The normalized inclusion proofs then serve515

as the canonical representatives. We have not yet worked out whether such a construction516

can still be modular and whether the quotients are still BNFs [12].517

Moreover, our representation of hashes as terms makes hashing injective. While this518

is "morally equivalent" to standard cryptographic assumptions, an alternative (followed by519

[5]) would be to prove results about authentication as a disjunction: either the result holds,520

or a hash collision was found. The advantage of such a statement would be that hash521

collisions become explicit, which simplifies the soundness argument for the formalization. As522

is, nothing prevents us from conceptually "evaluating" the hash function on arbitrarily many523

inputs, which would not be cryptographically sound. To make hash collisions explicit, we524

must make hashes explicit, i.e., use a type like bitstrings instead of terms. We do not expect525

problems with extending our constructions to such a model, but it is unclear how severely526

the indirection through bitstrings impacts our proofs, in particular the Canton formalization.527

We have based our construction on bounded natural functors (BNFs) as they are the528

semantic domain for datatypes in Isabelle/HOL and closed under least fixpoints. Fortunately,529

our Merkle constructions and proof need very little of the BNF structure and therefore530

generalize straightforwardly to other systems. For example, Lean’s quotients of polynomial531

functors (QFPs) [1] are more general than BNFs and also closed under fixpoints. The concept532

of a Merkle functor can be directly expressed on QPFs as the BNF setter in Def. 4 can be533

replaced by the predicate lifting for QPFs. The closure proofs for composition and least534

fixpoint also work with predicate lifting. Moreover, the meta-theory can be formalized in535

Lean’s more expressive type system, even for functors of arbitrary arity, and then instantiated536

for the concrete functor at hand. So in Lean, we would not have to redo the proof for every537

ADS. This also applies to other systems like Agda and Coq. Furthermore, the construction of538

concrete functors can be mimicked in any system that supports mutually recursive algebraic539

datatypes and higher-order functions, as all our ADS are built from sums, products, function540

spaces, and nested recursion through other datatypes, e.g., blindableh and blindablem. (Nested541

datatype recursion can be reduced to mutual recursion [2], so mutually recursive algebraic542

datatypes suffice.)543
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